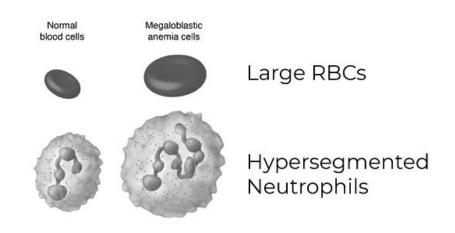
PHB

Dr. Arvind Kumar Gupta (M.Pharm, PDCR, PGDMM & Ph.D) GATE 2003 Qualified with 97.2 percentile Dr. S. N. Dev College of Pharmacy Shamli (U.P.)

OFFICE: BUILDING No. 3/314, OFFICE-1, GAUSHALA ROAD, SHAMLI DISTRICT SHAMLI (U.P.) – 247776 **Mobile:** +91-9719638415 **Email:**arvindrkgit@gmail.com

Course Name	: D. Pharm
Year	: Second Year
Subject Name	: Pharmacotherapeutics
Topic Name	: Megaloblastic anaemia



Chapter-7 Haematological Disorders

Topic: MEGALOBLASTIC ANAEMIA

Haematological disorders are conditions that affect the blood and blood-forming organs. Here's a comprehensive overview of haematological disorders:

Etiopathogenesis

Some of the common causes include:

7.2

1. Genetic mutations: Many haematological disorders are caused by genetic mutations, such as sickle cell anaemia and thalassemia.

2. Environmental factors: Exposure to certain environmental factors, such as radiation and chemicals, can increase the risk of developing haematological disorders.

3. Infections: Certain infections, such as human immunodeficiency virus (HIV) and hepatitis, can increase the risk of developing haematological disorders.

4. Autoimmune disorders: Certain autoimmune disorders, such as rheumatoid arthritis and lupus, can increase the risk of developing haematological disorders.

7.3

	-	-
	Eale	ucatior
 	EOL	
	LWV	

Types

1. Anaemia: A condition characterized by a decrease in the number of red blood cells or the amount of haemoglobin in the blood.

2. Bleeding Disorders: Conditions that affect the blood's ability to clot, such as haemophilia A and B, and von Willebrand disease.

3. Blood Cancers: Cancers that affect the blood and blood-forming organs, such as leukaemia, lymphoma, and myeloma.

4. Bone Marrow Failure: Conditions that affect the bone marrow's ability to produce blood cells, such as aplastic anaemia and myelodysplastic syndromes.

5. Coagulation Disorders: Conditions that affect the blood's ability to clot, such as thrombophilia and antiphospholipid syndrome.

6. Haemolytic Anaemia: Conditions that affect the red blood cells, causing them to break down prematurely, such as sickle cell anaemia and thalassemia.

7. Myeloproliferative Neoplasms: Conditions that affect the bone marrow's ability to produce blood cells, such as polycythaemia vera and essential thrombocythaemia.

7.4 Symptoms

The symptoms commonly includes:

1. Fatigue: Many haematological disorders can cause fatigue, which can range from mild to severe.

2. Weakness: Haematological disorders can cause weakness, which can affect the muscles and other parts of the body.

3. Shortness of breath: Certain haematological disorders, such as anaemia, can cause shortness of breath.

4. Bruising and bleeding: Haematological disorders can cause bruising and bleeding, which can range from mild to severe.

5. Infections: Certain haematological disorders, such as neutropenia, can increase the risk of developing infections.

7.5

Diagnosis

Diagnostic procedures may include:

1. Complete Blood Count (CBC): A CBC is a blood test that measures the different components of the blood, including red and white blood cells and platelets.

2. Blood Smear: A blood smear is a test that examines the blood cells under a microscope.

3. Bone Marrow Biopsy: A bone marrow biopsy is a test that examines the bone marrow and blood cells.

4. Genetic Testing: Genetic testing can be used to diagnose certain haematological disorders, such as sickle cell anaemia and thalassemia.

7.7

Pharmacological managements

Medications:

1. Medications: Medications, such as antibiotics and anticoagulants, can be used to treat haematological disorders.

2. Blood Transfusions: Blood transfusions can be used to treat anaemia and other haematological disorders.

3. Bone Marrow Transplantation: Bone marrow transplantation can be used to treat certain haematological disorders, such as leukaemia and lymphoma.

4. Surgery: Surgery can be used to treat certain haematological disorders, such as splenectomy (removal of the spleen).

Non - Pharmacological managements

Non-pharmacological management of haematological disorders includes:

1. Dietary changes: Eating a healthy, balanced diet that is rich in fruits, vegetables, and whole grains can help manage haematological disorders.

2. Exercise: Regular exercise can help improve overall health and reduce the risk of complications.

3. Stress management: Stress can exacerbate haematological disorders, so finding healthy ways to manage stress, such as through meditation or yoga, is important.

4. Avoiding triggers: Avoiding triggers, such as certain foods or environmental factors, can help manage haematological disorders.

5. Blood transfusions: Blood transfusions may be necessary to manage certain haematological disorders, such as anaemia.

7.8

Complications

Blood-Related Complications

1. Anaemia: Reduced red blood cell count or haemoglobin level, leading to fatigue, weakness, and shortness of breath.

2. Bleeding and bruising: Impaired blood clotting, leading to prolonged bleeding and bruising.

3. Thrombosis: Blood clots forming in veins or arteries, leading to stroke, heart attack, or pulmonary embolism.

4. Sepsis: Life-threatening infection that can occur due to impaired immune function.

Organ-Related Complications

1. Kidney damage: Haematological disorders can lead to kidney damage or failure.

2. Liver damage: Certain haematological disorders, such as haemochromatosis, can lead to liver damage or failure.

3. Heart problems: Haematological disorders can increase the risk of heart problems, such as heart failure or arrhythmias.

4. Lung problems: Certain haematological disorders, such as sickle cell disease, can lead to lung damage or failure.

Cancer-Related Complications

1. Leukaemia: Certain haematological disorders, such as myelodysplastic syndromes, can increase the risk of developing leukaemia.

2. Lymphoma: Certain haematological disorders, such as autoimmune disorders, can increase the risk of developing lymphoma.

Neurological Complications

1. Stroke: Haematological disorders can increase the risk of stroke.

2. Seizures: Certain haematological disorders, such as thrombotic thrombocytopenic purpura, can cause seizures.

3. Cognitive impairment: Certain haematological disorders, such as sickle cell disease, can cause cognitive impairment.

Other Complications

1. Osteoporosis: Certain haematological disorders, such as multiple myeloma, can increase the risk of osteoporosis.

2. Infections: Haematological disorders can increase the risk of infections, particularly in people with impaired immune function.

3. Psychological distress: Haematological disorders can cause significant psychological distress, including anxiety and depression.

Pharmacotherapeutics

PHBEducation

Practice Questions

MULTIPLE CHOICE QUESTIONS

- 1. What is the primary cause of megaloblastic anemia?
 - A) Iron deficiency
 - B) Folate deficiency
 - C) Vitamin B12 deficiency
 - D) Hemolytic anemia
- 2. Which of the following is a characteristic feature of megaloblastic anemia?
 - A) Microcytic red blood cells
 - B) Hypochromic red blood cells
 - C) Hypersegmented neutrophils
 - D) Elevated reticulocyte count
- **3.** Megaloblastic anemia is characterized by ineffective erythropoiesis due to:
 - A) Folate toxicity
 - B) Vitamin B12 toxicity
 - C) Defective DNA synthesis
 - D) Excessive iron absorption
- 4. Which diagnostic test is commonly used to confirm megaloblastic anemia?
 - A) Serum ferritin level
 - B) Hemoglobin electrophoresis
 - C) Schilling test
 - D) Serum vitamin B12 level
- **5.** Megaloblastic anemia is often associated with neurological symptoms due to:
 - A) Impaired hemoglobin synthesis
 - B) Decreased oxygen transport
 - C) Myelin degeneration
 - D) Elevated reticulocyte count
- 6. Treatment of megaloblastic anemia typically involves supplementation of:
 - A) Iron
 - B) Folate

- C) Vitamin C
- D) Vitamin D
- 7. Pernicious anemia, a type of megaloblastic anemia, is primarily caused by:
 - A) Folate deficiency
 - B) Vitamin B12 deficiency
 - C) Iron overload
 - D) Hemolysis
- 8. Which dietary source is rich in vitamin B12?
 - A) Leafy greens
 - B) Citrus fruits
 - C) Red meat
 - D) Whole grains
- **9.** The Schilling test is used to diagnose the cause of megaloblastic anemia by assessing: A) Vitamin B12 absorption
 - B) Folate absorption
 - C) Iron absorption
 - D) Reticulocyte count
- **10.** Complications of untreated megaloblastic anemia may include:
 - A) Hypertension
 - B) Osteoporosis
 - C) Cardiovascular disease
 - D) Neurological damage

FILL IN THE BLANKS

- The most common cause of megaloblastic anemia is a deficiency in ______.
 (Vitamin B12)
- Symptoms of megaloblastic anemia can include fatigue, weakness, pale skin, shortness of breath, and _____. (*Glossitis*)
- **3.** Vitamin B12 is essential for the production of ______, which are necessary for normal RBC formation. *(DNA)*
- 4. Treatment for megaloblastic anemia often involves ______ supplementation.(Vitamin)
- **5.** Megaloblastic anemia can be diagnosed through ______ tests, which show enlarged and abnormally shaped RBCs. *(Blood smear)*

SHORT ANSWER TYPE QUESTIONS

- 1. Define megaloblastic anemia?
- 2. Explain the role of vitamin B12 in the pathogenesis of megaloblastic anemia.
- 3. Describe the Schilling test and its significance in diagnosing megaloblastic anemia.
- 4. What neurological complications can arise from untreated megaloblastic anemia?
- 5. How is megaloblastic anemia treated?

LONG ANSWER TYPE QUESTIONS

- 1. Discuss the etiology and pathophysiology of megaloblastic anemia.
- 2. Compare the megaloblastic anemia caused by vitamin B12 deficiency and folate deficiency.
- **3.** Explain the role of intrinsic factor and parietal cells in the absorption of vitamin B12.
- 4. Describe the diagnostic approach to megaloblastic anemia.
- **5.** Discuss the complications that can arise from prolonged untreated megaloblastic anemia.

MCQ Answer											
1.	С	3.	С	5.	С	7.	В	9.	Α		
2.	С	4.	D	6.	В	8.	С	10.	D		